
Adapting the Pony language onto the seL4 microkernel

In search of a capability-focused microkernel programming interface

Stewart Webb
Email: sjwebb@student.unimelb.edu.au

A research project completed as part of a
Master of Science (Computer Science)

Supervised by Toby Murray

School of Computing and Information Systems
The University of Melbourne

November 2023

Full thesis available online at https://swebb.id.au/research

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 1 / 36

https://swebb.id.au/research


About me / Project context

Computing and Software Systems undergrad at Unimelb (2012 →
2014)

Several years in industry + a startup

Computer Science Masters part time (mid-2018 → end of 2022)

Exchange semester at ETH Zurich (2019),
’Advanced Operating Systems’ subject, under Timothy Roscoe’s
Systems Group + using their Barrelfish microkernel OS
seL4 capability project from UNSW Trustworthy Systems via AOS staff
link for Masters thesis

...???

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 2 / 36



Background to cover

seL4
=

Capability-based Operating System

Pony
=

Object-Capability Language

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 3 / 36



seL4 - a high-assurance, formally-verified microkernel12

Includes proofs of functional correctness, integrity + confidentiality in
access control, and information-flow noninterference

Capabilities centric to programming model

1 Gerwin Klein, Kevin Elphinstone, et al., “seL4: formal verification of an OS kernel”
2009.

2 Gerwin Klein, June Andronick, et al., “Comprehensive Formal Verification of an OS
Microkernel” 2014.

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 4 / 36



What are Capabilities?

Unforgeable references that represent both access rights and access
level/type

seL4 capabilties rough equivalent: Linux file descriptors

#include <fcntl.h>

int fd;

char buf[50];

fd = open("test.txt", O_RDONLY);

int bytes_read = read(fd , buf, 10);

Core related problem: Ambient Authority
+ Principle of Least Authority

Best motivated by the ’Confused Deputy’ example3

3 Norm Hardy, “The Confused Deputy: (Or Why Capabilities Might Have Been
Invented)” 1988.

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 5 / 36



seL4 Capabilities

∼12 capability types

(rough diagram, not comprehensive)

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 6 / 36



seL4 Mechanisms

Eight (only 8!) system calls:

seL4 syscall API

1 seL4 Yield()

2 seL4 Send(capability, message)

3 seL4 Recv(endpoint or notification cap, out sender info)

4 seL4 NBSend(capability, message)

5 seL4 NBRecv(endpoint or notification cap, out sender info))

6 seL4 Call(capability, message)

7 seL4 Reply(message)

8 seL4 ReplyRecv(recv endpoint or notification cap, reply message, out

recv sender info)

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 7 / 36



seL4 Capabilities Object Capability Languages ?

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 8 / 36



Object-Capability programming languages

A family of research programming languages

E (2006)4 , Joe-E (2010)5

Secure EcmaScript (2013)6 / Jessie (2018)7

Pony (2015) 8 9

Dala (2021) 10

4
Mark S. Miller, “Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control” 2006

5
Adrian Mettler, David Wagner, and Tyler Close, “Joe-E: A Security-Oriented Subset of Java.” 2010

6
Mark S. Miller, Tom Van Cutsem, and Bill Tulloh, “Distributed Electronic Rights in JavaScript” 2013

7
https://github.com/endojs/Jessie

8
Sylvan Clebsch, “’Pony’: co-designing a type system and a runtime.” 2017

9
https://www.ponylang.io/

10
Kiko Fernandez-Reyes et al., “Dala: a simple capability-based dynamic language design for data race-freedom” 2021

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 9 / 36

https://github.com/endojs/Jessie
https://www.ponylang.io/


Object Capabilities

What are object capabilities?

Capability principle applied to objects in object-oriented programming

Assumes memory-safety - references can’t be invented (e.g. pointer
dereference)

Allows clear understanding of what authority code has access to -
only what references it got passed!
e.g. importing a 3rd-party library - ”what will this code be able to do?”

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 10 / 36



Motivation - dynamic systems

From the original abstract for this project:

Whilst many tools have been developed for building systems with
seL4 such as capDL and CAmKES, they rely on static distri-
bution of capabilities upfront at project build time, and in
general do not provide for dynamic capability transfer once the
system has started.
In practice, for runtime/dynamic access control, many systems
revert to standard POSIX layers where ambient authority for re-
source access returns, throwing out the fine-grained access control
possibilities that come for free with a capability model.
In theory, an object capability language would provide a better
means for building dynamic capability systems, especially if such
a language can have seL4 capabilities for kernel objects mapped
into it.

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 11 / 36



capDL example

arch ia32

objects {

my_tcb = tcb

my_cnode = cnode (3 bits)

my_frame = frame (4k, paddr: 0x12345000) // paddr

is optional↪→
my_page_table = pt

my_page_directory = pd

}

caps {

// Specify cap addresses (ie. CPtrs) in cnodes.

my_cnode {

1: my_tcb

2: my_frame

3: my_page_table

4: my_page_directory

}

//...

//...

// Specify address space layout.

// With 4gb page directories, 4mb page tables, and

4kb frames,↪→
// the frame at paddr 0x12345000 will be mapped at

vaddr 0xABCDE000.↪→
my_pd {

0x2AF: my_pt

}

my_pt {

0xDE: my_frame

}

// Specify root cnode and root paging structure of

thread.↪→
my_tcb {

vspace: my_pd

cspace: my_cnode

}

}

Sourced from the capDL documentation at
https://docs.sel4.systems/projects/capdl/

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 12 / 36

https://docs.sel4.systems/projects/capdl/


capDL system example - “Secure Access Controller”

GNU/Linux
VM

Router
Manager

GNU/Linux
VM

GNU/Linux
VM

Communication
Endpoint

SAC
Controller

Timer

GNU/Linux
VM

Taken from Gerwin Klein, June Andronick, et al., “Comprehensive Formal Verification
of an OS Microkernel” 2014, pg 2:46

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 13 / 36



Research goal

seL4 Capabilities Object Capability Languages

Can the two be made to work together?

Can an ocap language provide a more useful way to program on seL4?

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 14 / 36



Choosing an OCap Language

Which language to choose?

Key problem: Dependencies

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 15 / 36



Dependencies matter a lot on microkernels!

Monolithic OS (e.g. Linux) Microkernel OS (e.g. seL4)

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 16 / 36



Choosing an OCap Language - Language Survey

E ✗ Java, JVM

Secure EcmaScript / Jessie ✗ JavaScript, JS engine

SHILL (+ PLASH) ✗ Racket extensions + Scheme

Dala ✗ Moth VM / Grace,

‘SOMns’ / Newspeak,

TruffleSOM, Java GraalVM

Other options

• Rust - cap-std + ferros crates Unclear ocap environment

• WebAssembly (surprisingly!) Still in development

• Microsoft Sing# 11 Windows build system, partially-closed source

Pony ✓ LLVM, C library

11C# extensions from ‘Singularity’ project
Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 17 / 36



Choosing an OCap Language - Why Pony?

Minimal language dependencies (C and OS syscalls), no bytecode or
interpreter

Performance focus, compiled via LLVM

Executable

compiled program code

linked libponyrt

calls into libponyrt

Compiler (ponyc) Runtime (libponyrt)

OS

Parser + Lexer (C)

Type Checker (C)

Code Generator (C, LLVM)

libponyrt API

syscalls

Pony source file

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 18 / 36



”Public” libponyrt API

(C) Functions called by LLVM-compiled code:

// runtime control

pony_init()

pony_start()

pony_stop()

// get global context

pony_ctx()

// threads

pony_register_thread()

pony_unregister_thread()

// allocate actor

pony_create(ctx, type)

// switch current actor

pony_become(ctx, actor)

// message-passing

pony_alloc_msg(size_index, id)

pony_send(ctx, to_actor, msg)

// allocate on current actor's heap

pony_alloc(ctx, size)

// scheduling

pony_schedule(ctx, actor)

pony_unschedule(ctx, actor)

// tracing for garbage collection

pony_trace(ctx, addr)

pony_traceknown(ctx, addr, type, mutability)

pony_traceunknown(ctx, addr, mutability)

// message-based garbage collection

pony_gc_send(ctx)

pony_send_done(ctx)

pony_gc_recv(ctx)

pony_recv_done(ctx)

pony_gc_acquire(ctx)

pony_acquire_done(ctx)

pony_gc_release(ctx)

pony_release_done(ctx)

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 19 / 36



Pony Overview + Components

Actor-model programming language with message-passing queues

12

12Diagram adapted from Sylvan Clebsch, “’Pony’: co-designing a type system and a
runtime.” 2017

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 20 / 36



Pony - Multicore Execution + Garbage Collection

Example from 13, showing how Pony GC occurs between actor behaviours
- no ’stop the world’ step.

13 Sylvan Clebsch et al., “Orca: GC and Type System Co-Design for Actor
Languages” 2017

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 21 / 36



Capability Embedding Models (broader thesis)

How might you go about linking Pony object capabilities and seL4
capabilities?

Remote (Pony) actors with communication via ’message pumps’ over
seL4 endpoints?

Handing off seL4 endpoints to represent capabilities to talk to
objects/actors?

Handing off physical memory between protection domains to
represent transferring objects?

Embedding seL4 capability types in Pony’s type system and backing
them with caprefs at runtime?

Various tradeoffs involved
Regardless... seL4 types likely required in Pony types, and thus, runtime
required

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 22 / 36



Pony on seL4

Let’s port to seL4! ”How hard could it be?”

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 23 / 36



Pony Components to Port

GC strongly relies on assumptions made from the usual Pony message-passing model
(which might not have been enforcable across seL4 protection domains)

Async I/O involves a special single ’pinned’ actor + monolithic-OS-specific async I/O
mechanisms (e.g. epoll/kqueue)

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 24 / 36



Pony Components - Pool Allocator

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 25 / 36



Porting Pony’s Pool Allocator

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 26 / 36



Pony Components - Actors

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 27 / 36



Porting Actor Communication

14

14(X) indicating that Heaps have yet to be ported
Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 28 / 36



Pony Components ported so far

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 29 / 36



’Key Observations’ during research

1 Pony in its current form15

assumes a single address-space of execution, and this is a
strong root of its object capability model.

Memory addresses can be used as unique identifiers, and are unforgeable due
to its memory allocation model (and assumption that the allocator is correct
and never hands out overlapping memory).

2 seL4 IPC does not support reliable non-blocking sending.

an NBSend call to an Endpoint silently drops messages if a thread is not
ready and blocked waiting on the other side of the Endpoint.

15Work has been done on a distributed version of Pony where distributed object
identity is addressed - see Sebastian Blessing, A String of Ponies: Transparent
Distributed Programming with Actors 2013

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 30 / 36



Discoveries and Conclusion

Pony object capabilities reliant on single address-space model in
current implementation. seL4 confined component communication
somewhat breaks this.

seL4 confined component communication also breaks Pony’s
unbounded queue assumptions (have to be able to handle failure)

Embedded memory constraints also don’t help

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 31 / 36



Discoveries and Conclusion

Pony in its current form lacks any execution ’compartments’ a la
Secure EcmaScript, which might better match seL4’s confined
components model

Also no dynamic code evaluation/eval()

seL4 capability transfer requires synchronous IPC - Pony
communication model is inherently asynchronous

”Ambient authority” / global rights often assumed for memory
allocation in OCap languages

Modifications to Pony / new language? / further research/work
required!

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 32 / 36



Ideas for future work focus

For a new or candidate language - implications of object model (GC?
heap/stack?)

Re-evaluate Singularity ”shared heap” idea? (May be relatable to
Dala’s safe/unsafe heaps?)

Language with memory allocation authority - heap, stack (e.g.
import mymodule with stackalloc(512))

Zig is actually somewhat of an example of this (see next slide)

Examine distributed ocap models further. E has many features for
this (NearRef, FarRef, Promise Pipelining) - may be design coupled to
its single-threaded ‘vat’ model though.

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 33 / 36



Zig explicit allocator example

From https://ziglang.org/documentation/0.11.0/#Memory

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 34 / 36

https://ziglang.org/documentation/0.11.0/#Memory


Bibliography I

Agoric Inc. Jessie, simple universal safe mobile code. GitHub repository. 2018. url:
https://github.com/endojs/Jessie.

Sebastian Blessing. A String of Ponies: Transparent Distributed Programming with Actors.
Available online at https://www.ponylang.io/media/papers/a_string_of_ponies.pdf
or https://www.doc.ic.ac.uk/~scb12/publications/s.blessing.pdf. Masters Thesis.
2013.

Sylvan Clebsch. “’Pony’: co-designing a type system and a runtime.”. PhD thesis. Imperial
College London, 2017.

Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, et al. “Orca: GC and Type System
Co-Design for Actor Languages”. In: Proc. ACM Program. Lang. 1.OOPSLA (Oct. 2017).
doi: 10.1145/3133896. url: https://doi.org/10.1145/3133896.

Kiko Fernandez-Reyes, Isaac Oscar Gariano, James Noble, et al. “Dala: a simple
capability-based dynamic language design for data race-freedom”. In: Proceedings of the
2021 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. 2021, pp. 1–17.

Norm Hardy. “The Confused Deputy: (Or Why Capabilities Might Have Been Invented)”.
In: SIGOPS Oper. Syst. Rev. 22.4 (Oct. 1988), pp. 36–38. issn: 0163-5980. doi:
10.1145/54289.871709. url: https://doi.org/10.1145/54289.871709.

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 35 / 36

https://github.com/endojs/Jessie
https://www.ponylang.io/media/papers/a_string_of_ponies.pdf
https://www.doc.ic.ac.uk/~scb12/publications/s.blessing.pdf
https://doi.org/10.1145/3133896
https://doi.org/10.1145/3133896
https://doi.org/10.1145/54289.871709
https://doi.org/10.1145/54289.871709


Bibliography II

Gerwin Klein, June Andronick, Kevin Elphinstone, et al. “Comprehensive Formal
Verification of an OS Microkernel”. In: ACM Trans. Comput. Syst. 32.1 (Feb. 2014). issn:
0734-2071. doi: 10.1145/2560537. url: https://doi.org/10.1145/2560537.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, et al. “seL4: formal verification of an OS
kernel”. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles. SOSP ’09. New York, NY, USA: Association for Computing Machinery, Oct.
2009, pp. 207–220. isbn: 978-1-60558-752-3. doi: 10.1145/1629575.1629596. url:
https://doi.org/10.1145/1629575.1629596.

Adrian Mettler, David Wagner, and Tyler Close. “Joe-E: A Security-Oriented Subset of
Java.”. In: Proceedings of the Network and Distributed System Security Symposium, NDSS
2010, San Diego, California, USA, 28th February - 3rd March 2010. The Internet Society,
Jan. 2010. url:
https://www.ndss-symposium.org/ndss2010/joe-e-security-oriented-subset-java.

Mark S. Miller. “Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control”. PhD Thesis. Johns Hopkins University, May 2006.

Mark S. Miller, Tom Van Cutsem, and Bill Tulloh. “Distributed Electronic Rights in
JavaScript”. In: ESOP’13 22nd European Symposium on Programming. 2013.

Pony Developers. Website for the Pony programming language. Website. 2022. url:
https://www.ponylang.io/.

Stewart Webb (University of Melbourne) Adapting Pony onto seL4 November 2023 36 / 36

https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://www.ndss-symposium.org/ndss2010/joe-e-security-oriented-subset-java
https://www.ponylang.io/

	References

